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An Approximate Nonlinear Analysis of
Tunnel-Diode Converters

CHARLES C. H. TANG

Abstract—Approximate analyses published previouslyI—! on tun-
nel-diode converters are basically phenomenological in nature by restrict-
ing the currents flowing through the tunnel diode or (and) the voltage
across it to the signal, local oscillator, and intermediate frequencies only.
Because of the nonlinear natare of the tunnel diode, many higher-order
frequency components corresponding to harmonics and products, sums,
and differences of the above mentioned frequencies are present. By in-
cluding the effects of series resistance and series inductance and restricting
the operating region within the parabolic portion of the tunnel-diode char-
acteristics, the present analysis attempts to formulate the problem in a
“‘rigorous’’> manner through the derivation of a second-order nonauton-
omous nonlinear differential equation with time-varying coefficients.
The solution to a ‘“first-order’’ approximation is obtained by incorporat-
ing a variational type treatment with an expansion type perturbation
method.

In an effort to verify the validity of the theoretical results obtained by
the nonlinear analysis, an analog simulation is carried out since the con-
trol of required parameters in actual experiments is extremely difficult,
especially in the microwave frequency region. The general agreement be-
tween the theoretical results and the analog simulation is promising and,
therefore, should yield enough information to facilitate the control and
adjustment of the various parameters in actual experiments especially in
the microwave region. Specifically, we have verified by the analog simula-
tion the theoretical prediction that the optimized conversion gain is ob-
tained when the source resistance is about one third of the load resistance.

In addition to minimizing the converter noise, the noise due to the first
IF amplifier can also be minimized by selection of the correct converter
load resistance by using Figs. 4 through 8.

INTRODUCTION

N MOST RF receivers, frequency down-converters or
J:[ mixers precede high-amplification IF strips in order to

facilitate amplification processes. Conventional crystal
converters inevitably introduce conversion loss and there-
fore degrade the overall noise figure whereas a tunnel-diode
converter can offer a low overall noise figure because of its
conversion gain! and possible low excess noise power. The
alternative method of using parameteric amplifiers at RF
can offer comparable low overall noise figure but the need
of an extra source at a pump frequency makes this scheme
somewhat less attractive in comparison with tunnel-diode
converters.

In earliest studies on tunnel-diode converters™- in the
UHF region, the problem is simplified by assuming that the
series resistance and series inductance of the tunnel diode
are negligible in its equivalent circuit. In the microwave
region’® however, these series components may not be in-
significant and should be included in the analysis. By re-
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Fig. 1. A tunnel-diode converter circuit.

stricting the operating region in that portion of the tunnel-
diode characteristics which can be approximated by a parab-
ola, we present a generalized analytic approach including the
effects of the series resistance, series inductance, and time-
varying shunt capacitance of a tunnel diode used as a down-
converter at microwave frequencies.

The complete circuit of a tunnel-diode down-converter is
shown in Fig. 1. Across the tunnel diode, the RF branch
ABB' A’ consists of a signal of an amplitude S, a local oscil-
lator or pump of an amplitude L, an equivalent source re-
sistance ry, and an ideal RF bandpass filter; the biasing
branch ACC'A4’ consists of a dc bias voltage V3 and an IF
choke; the IF branch ADD’A’ consists of a load resistance
R;, and an ideal IF transmission filter.

We stipulate that the bias condition for the tunnel diode
operating as a converter be such that the average conduc-
tance be positive in order to prevent oscillation regardless of
termination. This requires that the dc bias voltage V3 be less
than the voltage v, at the peak of the - characteristic. If
we further stipulate that the maximum LO excursion point
is not allowed to reach near the inflection point p of the
7—i characteristic shown in Fig. 2, we can assume that the
region of our interest in the 7— characteristic of the tunnel
diode can be represented very closely by a parabolic relation

2
1q = abqg — big® = aiy <1 - _2“‘> = f(82) ey

Up
with
Do =va+ Vo 2

where v4 is the “ac” voltage developed directly across the
nonlinear resistance of the tunnel diode, and the constants
a and b can be found by fitting the parabolic section of
7-i characteristic of the actual tunnel diode in question. Fig,
2 shows a typical germanium tunnel-diode characteristic and
the idealized parabola.



TANG: ANALYSIS OF TUNNEL-DIODE CONVERTERS

4
l
|
= [
g I |
z |
- P
/
\ /
. \ /
D /
~ —
o] I I | ! | |
0 Vp 100 200 300 400 500 v

VOLTAGE IN mv

Fig. 2, 7-i characteristic of a tunnel diode.

FORMULATION

For purposes of analysis the circuit of Fig. 1 can be sim-~
plified as shown in Fig. 3. Because of the nonlinear nature of
the tunnel diode, v; may consist of voltages of many fre-
quencies and we want to find v, by deriving and solving the
differential equation in v, The source resistance r, and the
load resistance R; are among the unknowns to be solved and
should assume different apparent values for currents of dif-
ferent frequencies because of the actual presence of filtering
circuits in different loops. This statement will be explained
more explicitly later. Fig. 3 supplies the following general
equations

vg = V() — Irg — iR, — L, @ (3)
di
d
¢=@+u=3¢am+¢@> 4)
I=i+z‘,=¢+<vd+iRs+Lsﬁ>i- (5)
dt/ R,

Combining (1) to (5), we have the differential equation

LoQhh
a2
Y [T P I
\ i dt
o+ (a-mr+ ) + 102
dt ag
— bKvg? + (@ — V) VoK = V(0) (6)
where
To
Q=1+
K =ro+ R, + Tﬁs @
and
V() = Lsin et + Ssin (@t + ¢s). ®)
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ES —(q — — 10 ;
Lol T 1T a
1 d*C;
c; de’
bK
D= )
LsCJ'Q
B (a — bV VK
CLCQ
F = L si t + S sin (wst -+ ¢ 9
.00 [L sin w, (w0t + ¢5)] (9)
we have from (6)
d%g dvg
o 4+ Cva = F — E + Dvs? — (A — Bua) 0 - (10)

Clearly (10) is a second-order nonautonomous nonlinear
differential equation with time-varying coefficients.

To estimate the effect of time-varying terms on the coeffi-
cients, we have to investigate how C; varies with time. For a
p-n junction the associated nonlinear capacitance C; is a
function of the applied voltage. Since we stipulate that the
bias voltage V3 is less than the peak voltage », and the
maximum LO excursion point does not reach the inflection
point p, the variation of the capacitance AC is small in
comparison with the capacitance Cj at the bias voltage V5.
Therefore, the nonlinear capacitance is approximately
equivalent to a time-varying capacitance!®

C,‘ = Cjb -+ AC sin wil.
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It follows that

A
—log C; = w; — cos wil
di g L le 1

1 (d2C,-> AC
— = — w2 —sin wyl.
C;\ dt C;

1t is obvious that as long as w; is not too high (i.e., w;<wo,
where w, is the natural frequency of the converter system, to
be explained later) and AC is smaller than C;, the time-
varying terms can be neglected. By dropping the terms con-
taining the time derivatives of Cj, the coefficients of (9)
become

1 K a—2bV,
A=—— + —
L, Q Ci
2b
B=—,
C;
¢ =—l14@—2vy K]
= a — 1
Lle ’ Q
b K
D= S
LsCi Q ’
— V)V K
g @V K
Lst Q
F@t) = e [L sin wit + S sin (wit + ¢)].  (11)

It is important to note that, except B and F, all coefficients

are a function of K/Q, whereas F is a function of Q alone.

This means that the effective magnitude of the forcing func-

tion F depends only on the actual value of Q=1+7/R,.
If the following condition is fulfilled

C > Dug (12)

and the terms A(dvy/dt) and Bva(dvs/dt) can be considered
as small linear and nonlinear damping terms, respectively,
we can now identify the square root of the coefficient C as
the natural frequency wy of the system. The term [F(¢)— E|
is the forcing function. Note that the natural frequency w,
of the converter system is inversely proportional to the
square root of L,C; and it becomes larger, or smaller, than
1/+/L,C; depending on whether V3 is smaller, or larger, than
the peak voltage v, of the 7 characteristic of the tunnel
diode in question. In addition it is a function of R,, r,, and
R; and therefore it is considerably more sophisticated than
the conventional expression

1 V‘—L,
wa = 1 — .
VL.G; CR:

We now attempt to solve the nonautonomous nonlinear
differential (10) to a first-order approximation by a method
incorporating a variational treatment and an expansion-
type perturbational treatment. If both L and S can be con-
sidered as “hard” forcing functions, we can write (10) in the
parameter form
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d% dv,
Et;d + wozl)d = G[D?)dz - (A - Bvd) -d—:-:|
+ [L/ sin wit + 8 sin (wet + ¢5) — E] (13)

where e is a small parameter to be used in an expansion and

. L
L' = ,
L.C,Q
N
S = : (14)
L.C,Q

Before solving (13) we introduce
1) the following set of values for a typical germanium
tunnel diode suitable for use as a down-converter:

a =86 X 10-*V,
b = 0.54 X 10~ V/mV,
C;j=1X101F,
L, = 0.3 X 10~° H,

R, =25Q; (15)

2) the following operating frequencies:

fi = 4170 MHz,

f» = 4100 MHz; (16)

3) the following range of operation for:
L =60 — 90 mV,
S <KL,

Ve = 55 — 75 mV. 7

Values in (15) to (17) show that (12) can always be satisfied
for a wide range of ro and R;.

We shall assume a general perturbation solution of (13)
in the form of an asymptotic serics

Vg =voF &1+ s+ vz - - - (18)

The solution (18) is expected to be quasi-harmonic and v,
is the “zeroth-order” harmonic solution termed as the
generating solution. It is evident that v, is the solution of (13)
as e approaches zero. Poincarel'”! has shown that solution
(18) is analytic in terms of its parameter e. Writing (18) in
terms of the generating solution, we have

ve = Gsin (wit + 0) + H sin wit + T sin (ot + ¢,)

+P+ert+evt .- (19)
where

G = G(t))
= 0(t); (20)

LI

H=——#+—
w02 —- wl"’

T = Gl ; 21
- w02 . wsz ’ ( )

E
= —— (22)

w02
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In passing it is pointed out that both G and 8 will be con-
stants as e approaches zero. The procedure now is to develop
by iterative processes higher-order solutions with the aid of
the small parameter e. Considering only the first-order solu-
tion, we are led to the variational equations

G do do\?
o~ 26u — 6 ()
di? di dt

) . d@G
=¢ {ZDG[H sin wit + Tsin (wt + ¢5) + P] — A -

da
+ B [Et— (H sin wit + T sin (wst + ¢5) + P)

-+ w,GH cos wit + w.GT cos (wst + d)s)]} (23)

o L dG+2dG do
ae di dt

= AG + d0> + BG< -+ db
N 6{ <w° dt 0 dt)
[H sin wit + T sin (o + ¢5) + P]} (24)

and the perturbation equation

d27)1
dat?

D G dGq
oo = — (H+ T+ 2P + E(DGJFB —(—17)

+ H[2DP sin wit + wi(BP — A) cos wit]
+ T[2DP sin (wst + ¢5) + w.(BP — A) cos (wst + ¢5)]

2
-+ re [Bwl sin 2wt — D cos 2w1t]

&

q oy .
#2186 (w4 2 sin2(e 40

“

e
— (DG + B —dt—> cos 2(wol + 0)]

2

+ — [Buws sin 2(wst + ¢s) — D cos 2(wit + ¢)]

9
B .

+HT {5 (w1 + @) sin [(w1 + @)t + 6]

— Dcos [(w + w)t + 031}

+ HT {D cos [(w; — w)t — &)

B
~ 7 (o= @)sin [(o1 — w)t — ¢S]} .

7

(25)

Assuming both G and 6 are slowly varying functions of time,
we can retain only the first-order terms in (23) and (24),
respectively, as

607
dé € .
- __{2D[H51nwlt+TSiIl (wst+¢s)+P]
dt 2600
+ BlwH cos wit + wsT cos (it + ¢.)]} (26)
dG@ G

=% { — A+ BI|H sin wt+ T sin (wt+¢s)+PJ}. 27

The solutions of (26) and (27) are, respectively,

€ H T
= —— {2D [Pt — — 08 wit — — cos (wt — 0)]

we wy Ws

+ B[H sin wit + T sin (ot + 6,) ]} (28)

and

G = exp <é {(BP — A)t

—B l:z cos wit + z cos (wst + ¢s):|} ) (29)

wy Wg

The amplitude function G is exponentially decaying or rising
depending on the sign of (BP-A4). From (22) and the values
of (15) to (17) we note both 4 and B are positive quantities
but P is always a negative quantity for bias voltage V; less
than »,. Accordingly G approaches zero as time elapses, i.e.,
there is no steady-state natural frequency oscillation in the
system as specified by the values in the range of (15) to (17).
The solution of (25) therefore is

(H2+T2+4-2P?)

1=
w02

+

[2DP sin wit+wi(BP— A4) cos wi]
wo? —w;?

+ [2DP sin (wt+¢.) +w,(BP—A) cos (wit+¢s)]

wo?— ws?

H? ‘
+m [Bw, sin 2wit— D cos 2wit]
T2
+W [Bw, sin 2(wst+¢s) — D cos 2(wst+¢s) |
HT
+—‘-“”“‘ {—D cOoS [(wl+w3)t+¢x]

wol— (wiFwe)?

+? (witw,) sin [(wl‘f‘ws)t‘l“f’“]}

HT
wot— (w1 —w,)?

{D 08 [(wi— ws)t— b

B .
——2‘ (wl—ws) sin [(wz—ws)t—qﬁs]} . (30)

The first-order solution of (13) therefore is

Va1 = M Sil’l (wlt + El) + N sin (wst + ¢s + Es)
+ U cos (2th + EZl) + W cos (Zwst + 2¢, + 523)
+ X cos [(wr + @)t + &5 + Ersl

+ Y cos [(w1 — wdt — &l +J (31
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where
2pr 2 w(BP — A)¥)e
M = H[(l + €D -+ :l ,
CO02 — wl2 (6002 —_— wl‘l)2
BP — A
El = tan~! Ewl( )

)
we? — w2 + DP

2P 2
N = T[(l + €D ) —+-
wo? — w2

ews(BP — A)
we? — w2 4 eQDF;

w2 (BP — A)Q—lll2

(w02 — w2)? ]

£ = tan™!

U eDHZ ‘:1 + Ble2 i|1/2
B 2((1)02 d 40)12) D2 ’
—Buw
gg; = tan—t —Dl’
W 6DT2 [1 + B2w32]1/2
B 2(wp? — 4ws?) D2 ’
— B,
EQS = tan—! D ’
. eDHT [1 LB e ]”
T e — (e w)? ap? T .I ’
_B(w + ws)
£, = tan™! ———~_Z2D ;
v eDHT
g — (0 — wy)? ’
J =P+ eD (H? + T + 2P?). (32)

2&)02

It is important to note that the image frequency (2wi—w;)
component of voltage does not appear across the tunnel-
diode terminal v4 in the first-order solution.

Examination of equations (32) shows that these coeffi-
cients may blow up at their respective singularities. Physi-
cally these singularities mean that oscillations may occur
when the natural frequency w, of the system is equal to w; or
w, or their harmonics. Using the values of (15) to (17), we
obtain from (11) that the natural frequency f, of the system
varies from 10 to 20 GHz depending on the magnitudes of
the biasing voltage V; (always less than v, for our converter
use), source resistance #; and load resistance R;. Simple ap-
proximations from these coefficients are possible when fo
is much. larger, or smaller, than the operating frequency f.
It is quite clear now that tunnel-diode down-converters with
gain can be successfully operated in the UHF region (f<f0)
whereas in the microwave region instability in operation has
been the main difficulty in experiments. If we operate at 4
GHz and assume fo=9 or 10 GHz, instability might not
occur. If, however, fo=8 or 12 GHz, obviously instability
conditions are satisfied. On the other hand, if f, is near 20 or
24 GHz, we might not have the instability conditions, since
these fifth or sixth harmonics are higher-order terms in the
small expansion parameter e It is now theoretically clear
that for stable mixer operations, we should look for tunnel
diodes with very low C; and L, so that f, is way above the
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operating frequency f. The best way to reduce L, and C;
is to fabricate the tunnel diode directly across the walls of
the waveguide of reduced height. In what follows we shall
only investigate the «*&wy® case.

We note from (31) that the voltage v4 developed across
the nonlinear part of the tunnel diode does contain an
IF component of amplitude Y. Because of the different
filtering circuits in different branches, this IF component of
voltage is effective only in the IF branch ADD’A4’. We also
note that the ac voltage vs has an average dc component
J and the total apparent or equivalent dc bias across the
tunnel diode now is V,+-J instead of V5.

Having obtained the ac voltage across the nonlinear
resistance part of the tunnel diode, we are now in a posi-
tion to determine all the current components of 7 flowing
through the tunnel-diode branch between 4 and 4’ of Fig.
2. We have from (4) and (31)

i d
T = C]-E Va1
= C,{wiM cos (w1 + &) + wN cos (wit + ¢ + &)
— 2 U sin (2uit + £21) — 20, W sin (2wt + 2¢; + £20)
— (o + w) X sin [(w + @)t + dfrss]
— (o — @) Vsin [(o1 — @)t = ¢}
and from (1), (2), and (31)
i = la = bV +D]Ve+J) + la — 20(Ve + )]
AM sin (et + &) + N sin (o + ¢ + &)
+ U cos et + &) + W cos [2(wit + ¢5) + £ad]
+ X cos [(wr + wi)t + dira)]
+ Y cos [(wz — wo)t — ti)s]}
— b{M sin (it + &) + N cos (ws + ¢: + £)
+ U cos (2w; + £21) + W cos [2(wd + &) + £2]
+ X cos [(wr + @)t + ¢ + Ervs)
+ Y cos [(wmwa)t — ¢:]}%
For clarity purposes all components of the current i=i,+1iy
are listed in the Appendix and are arranged in increasing

frequency order in spectral form.
Picking up only the IF terms, we have

(33)

(34)

i = foi + tai

— Cywr — @) Y sin [(0r — w)t — ¢,]

+ [a — 26(Vy 4+ J)1Y cos [(01 — we)t — b4

— BMN cos [(w — w)t + & — & — &4

— bUX cos [(w; — w)t + E120 — E10s — ¢.]

— BIWX cos [(w; — wi)t — 120 — E1ps — ¢ (35)

It is important to note that as long as C, is small and the IF
is not too high, the component of IF current due to Cj is
always negligibly small (relatively). By comparison of the
magnitudes of the terms in (35), we have, assuming wo>>w??
and neglecting term of &,

i = la — 26V + D]Y cos [(wr — )t — ¢]

— BMN cos [(w; — w)t + & — & — ¢)].  (36)
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Since £;=§, as seen from (32), (36) can be simplified as

ii = {[a — 26(V, + )]V — bIIN}
-c0s [(w; — w)t — ).

we have to first-order terms in e,

eDHT 4P
- bHT<1 + €D ——)}
wo? w?

~{oos [(wr — w)t — @u].

i = {[a — %V + )]

tance R;.

t,= — bHT {1 - la — 2b(Ve + 2P +J)]}

wp?

< CO8 [(wl - ws)t - ¢S]

>

- (bLS |:1 + 26Q2P +J) —2—}

2 K8

ccos [(w; — w)t — o] (39)
where
(a — bV,)V é’—
E b b Q
P=——=— - (40)
o L1 (=27 &
Q
J = P+ —— (H* 4 2P?)
3 K
2 Q
e E]
0 — =
" Q
G
r Q i
1 [1 A ET + 2P l (41)
l " q
and
E _ Rl(ro + Rs) + ok, ) (42)
Q Ry + 7o

Since we are interested only in the IF component of the
current, the value of the effective load seen by the IF
circuit can be obtained by letting the source resistance
re— o in the expression of K/Q. This is physically reason-
able because of the presence of the RF bandpass filter in
the RF circuit branch. From (42) we have

—'>Rl + Rs.

Q ro— ©

(43)

(37)

Substituting (32) into (37) under the assumption we > w?,

(38)

Rearranging (38) and using (21) and (22), we have, drop-
ping e, the following IF current flowing in the load resis-

609
Accordingly the IF current in final form is
P [ bLSR? J [1+2@QP + )R+ R,)]
' (B + ro?d [L + (a — 26V3) (B + R.)]*
ccos [(w; — we)t — o) (44)
where
_ (@ — bVy)Vi(R: + R.) (45)
1+ (@ — 2bVo)(R; + Ry)
and
b
_5 (Rl + RS)
J =P+
[1+ (@ — 26Vo) (R, + R))]
G
Ry =+ 1o
. -+ 2P? 46
hl + (a — 2bV3)(Ry + Ry)]? o)

Inspection of (44) shows the important fact that the IF
current is linearly proportional to the signal amplitude S
as it should be.

We are now in a position to calculate the maximum pos-
sible transducer or conversion gain (or loss), which is de-
fined below as the ratio of the power delivered to the load
resistance to the available signal power (i.e., for a “con-
jugate match” at both the source and load terminals):

1,2R; 4.2R o
G(or Loss) = =
S2 S
dro
bLR:2 2 {1 +202P + (R, + R, |2
=4Rz1"0[ 1 :l [ + 26Q2P + J)(R, + )] . @7
(Ri+ 10 [1 4+ (@ = 20V)(B: + R,)]°

The conversion gain is independent of the signal level
as it should be. Optimizing the conversion gain with re-
spect to source resistance 7o, we obtain the simple and im-
portant result

Ty = %‘Rl

(48)

Substitution of (48) into (47), we have the conversion gain
expression in a manageable form in parameters as

G(or Loss)

- (Younr

As R; approaches zero or infinity the conversion gain G
approaches zero as it should.

[1 +26@P +J)(B:+ R)]*
[1 4+ (@ — 26Vy) (R, + Ry)]®

(49)

RESULTS AND DISCUSSIONS

Optimization of the conversion gain G in (49) with re-
spect to the load resistance R; is obviously very desirable
but impossible, since we have to solve for the multiple
roots of a seventh degree polynomial with unknown param-
eters as coefficients. On the other hand, the optimization
can be easily obtained for given parameters V, and L by
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Fig. 6. Tunnel-diode converter characteristics.

using R, as a variable to plot against G. This is carried out
for various combinations of V3 and L in (49) and is shown
in Figs. 4 through 6, for values of a, b, and R; specified
in (15). For completeness we also discuss the optimization
of G with respect to V3 or L. Since at the start of the
analysis we have restricted the ranges of V3 and L, respec-
tively, any optimization with respect to these parameters
does not mean too much for our purpose. Although these
optimizations may give us arbitrary large conversion gain
outside the specified range of ¥ and L, our main interest
lies in small conversion gain with stability which is only
attainable experimentally or analogwise within the range
of specified V; and L for a parabolic 3—i characteristic. It
is seen from (49), that within the specified range of L, G
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is only approximately proportional to the square of L
since J is also a function of L. In general G increases rapidly
with increasing bias voltage ¥ and instability occurs with
V;, approaching »,. The combination choice of ¥, and L
must be such that the LO excursion point does not exceed
the inflection point p. Figs. 4 through 7 show effects of ¥, and
L on G. It is seen that for a constant ¥ the optimum load
resistance R; remains constant and independent of L. The
optimum load resistance R, for maximum conversion gain
decreases with increasing V3 and is shown in Fig. 8 by cross
plotting from Figs. 4 through 7. Finally we mention that G is
approximately proportional to the square of b, the coefficient
of the quadratic term of the parabolic 7—i characteristic.
Accordingly itis advantageous to choose a tunnel diode with
7-i characteristic of large b and this, in turn, means those
characteristics with steep slope and high peak current.

The choice of the magnitude of L to acquire a required
conversion gain depends mainly on the choice of the bias
voltage V3. A smaller value of V; always needs a larger
value of L to obtain the prescribed gain as shown in Fig. 7.
In order to have a conversion gain in this case, we have to
use a value of L which is much larger than the specified
range. From the point of view of reducing the shot noise
in a tunnel-diode converter it is advisable to use relatively
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Fig. 9. Analog simulation circuit for tunnel-diode converters.

higher V3 and smaller L in such a way that the conversion
gain remains small enough for stable operations. The
combination of higher ¥; and smaller L (Fig. 6) should
limit the pumping excursion in a region where the shot
noise is relatively small in comparison with that in the re-
gion near the origin where the shot noise is usually signifi-
cantly enhanced. Because of the multiplicity of the roots
usually there are several values of R; which yield the same
gain as shown in Fig. 6. The high gain region of R; does
not appear to have stable operation. The overall noise
figure can be defined as!3!

_ NS _
N./S;

N,
GuNa

(50)

where

Ny=actual noise power delivered at the output
So=actual signal power delivered at the output
N;=actual noise power delivered to the input
S;=actual signal power delivered to the input
G,=available power gain
N.=excess noise power delivered at the output due to
internal sources in the network
N,=kTAf=available input noise power.

The overall noise figure of receiver can be improved by
employing a tunnel-diode down-converter because of its
conversion gain and possible low excess noise power ac-
cording to (50).

We shall now turn to the results of the analog simulation,

A block diagram of the analog circuit is shown in Fig. 9.
The analog simulation has verified the theoretical predic-
tion that when the source resistance 7, is about one third
of the load resistance R;, the conversion gain is maximum.
The conversion gain or loss, obtained from the analog
simulation, is shown by daggers in Fig. 4 for the case of
L=80mV and V;=60 mV. The simulation conversion gain
or loss is computed from the ratio equivalent to (47), i.c.,

Va2 S?
G (or Loss) = (—) / (—>
Rz 4:7’0
&)/ @)
R, 4R/3
(5)
3\ 8
where ¥ is the IF voltage across the load resistance R,.
The general agreement between the digital and analog
results is both satisfying and promising and therefore
should yield enough information to facilitate the control

and adjustment of the various parameters in actual experi-
ments, especially in the microwave region.

(51)

APPENDIX

TUNNEL-DIODE COMPONENTS OF THE CURRENT =i}
de la — (Ve +DI(Ve + J)

b
—?[MZ—I—N2+U2—!—W2+X2+ Y2:|
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— bMN cos [(w; — wo)t + & — ¢o — &)

— bUX cos [(0r — w)t + £ — ¢s + £ups)
— WX cos [(w1 — @)t — ¢ — £a5 — Eitol
4+ CY cos [(w; — ws)b— s
— Ci{lw; — w) Y sin [(wz — w)t — qbs]

Ui —ws) — BUW cos [2(wr — i)t + E21 — 205 — £as]

L — bY2cos [2(w; — ws)t — 2]

[[wi — ws

BMW sin [(2w, — @)t — & + 2¢s — £2)
— BNY sin [2w, — wi)t + 265 + &]
s DMX sin [wd — & + & + Eita)
— DMY sin (wst + & + ¢s)
+ DNW sin (i + ¢. — & + £22)
+ CN sin (wi + &5 + &)
+ C,wsN cos (wid + ¢ + &)
; bMU sin (wit — & + £21)
— BNX sin (i + & — Eups)
— bNY sin (wit + &)
+ CM sin (wt 4 £)CiwiM cos (wit + &)

2w — w;

%0 — we  — bMY sin [Cwr — wi)t + & — ¢4
L + BNU sin [Qw; — @)t — ¢s — & + le]
3w, — w; — DWY cos [(Bws — wi)t + 3¢5 + £2)

206 — bXY cos (2044 + 2¢5 + Fits)
4+ OW cos Qust + 2¢, + £20)
4+ bN? cos (2wt + 2¢s + 2&)
+ 2C,0,W sin 2wt + 2¢; + £25)
BMN cos [(wr + w)t + & + ¢, + &]
— bUY cos [(w1 + w)t + £ + &)
— WY cos [(w1 + @)t + ¢ + 2
+ CX cos [(wr 4+ @)t + ¢ + E11s]
— C)(w; + w) X sin [(w; + wi)t + s + Erie
2w} — bX Y cos Quit + Erps)
+ CU cos 2uwit + £20)
+ bM? cos (2wit + 2&))
— 20,0, U sin (20 + £21)
— bUY cos [(Bwr — ws)t + £21 — &b

wp + ws

L3w; — ws

3w, — DNW sin (3wt + 3¢, + & — £20)
D0y + wr  — bMW sin [Qws + w0t + & + 26 + £24]
— BNX sin [(2ws + wi)t + 265 + & + £1ve)
2wi + ws  — bMX sin [(Qui + )t + & 4+ s + L1t
— bNU sin [(Qw: + ws)t + ¢ + & + £21)
| 3e; — bMU sin (3w; + & + £21)
4w, — bW? cos (4wit + 4¢s + 2£:)
3w, 4+ w;  — WX cos [(3w, + w))t + 3¢ + Eae + £rpal
2witw) — DUW cos [2(wr + wi)t - £z + 265 + Eas]
— bX? cos [2(wr + @t + 260 + 28]
3w+ @, — BUX cos [(Bw; + wi)t + Far + b + £140]
| 4o, — bU* cos (it + 2620)

where C=a—2b (V3+J).
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